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Gravitational Radiation from Binary Systems: 

Two bodies of masses "1 and m attracting each other according to Newton's 2 

law of gravitation move in circular orbits about their common centre of mass. 

The system acts as a source of gravitational waves which reduce the total energy 

of the system at a rate [ E )  . As a result, the separation r between the two 

masses progressively decreases while. the angular velocity of rotation 0 increases*. 

We investigate the variation of these quantities and apply the results to astro- 

nomical objects. 

Rate of Energy Release: 

The rate at which gravitational energy is released by any time-dependent 

mass distribution can be calculated on the basis of linearised field equations 

(See Landau & Lifshitz "Classical Theory of Fields", Ch. 11). The expression thus 

obtained is 

where G = 

c =  

and 

where p = 

i, j = 1, 2-, 3 

-8 3 -1 -2 Gravitational Constant = 6.67 x 10 cm gm sec 

Velocity of Light = 3 x 10 10 cms/sec 
i j  2 

Dij = J p (3x x - 6ij "k> dv 

Density of mass distribution. 

we denotecg) in future by Luminosity L in view of the fact that we would 

eventually be dealing with astronomical bodies. 

Evaluation of (iii i ) : 

One can always compute the various compdnents Dij individually as 
" 2 functions of time and evaluate (Dij) . However, when rotation of rigid bodies is 

* The frequency of the emitted gravity waves is 0 = 2 0 as we are dealing with 
quadrupole radiation. g 
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involved, a simple and elegant expression can be obtained as follows: 

We can express the 3 x 3 matrix D = [Dijl at time t as 

D(t) = A(t)D0A-'(t) 

where Do = the initial value of matrix D at t = o 

A(t) = rigid rotation operator which can be represented as a 

3 x 3 real orthogonal matrix (See Corben and Stehle "Classical Mechanics", Ch. 9 

or Goldstein 'Tlassical Mechanics", Ch. 4). 

We note A-'(t) = A (t) T 

L2 t and A(t) = e where Qis the infinitesimal rotation matrix. (A specific form 

for Q will be assumed below.) 

Also QT=- Q 

It follows then, - - - ATnT=-A T Q . - Q A ;  - -  dA 
dt dt 

Differentiating the equation for D(t) with respect to time, 

h(t) = n ADoAT - ADoATn 
o T 2  E(,) = n2ADoAT - 2 Q ADoATQ + AD A 

0.. o T 3  o T 2  2 o T  D(t) = n3AD0AT - AD A Q + 3 (  Q AD A Q - II AD A !3 ) 

a*# 3 
In case of uniform rotation the final result for Dij would be independent of time, 

so that we can replace A(t) by its initial value A(o) = 1 

Thep D = (Q3D0 - Don3) + 3(n Don2 - Q2DoQ ) 
... 

For uniform rotation about Z axis with angular velocity 

specifically as : 

0 one can write n 

n = y o l o ) ;  n 2 = J  (l o o )  ; Q3=J (o-lo) = - o w  2 
-1 0 0 0 -1 0 1 0 0  
0 0 0  0 0 0  0 0 0  

n Making use of the last relation and denoting - w = A, we get 

'5 = 03 (Doh - No) (1 - 3~') 
Further, if at t = 0 the principal axes of the rigid body coincide with the 

0 spatial axes of reference, D would be diagonal, 
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i. e., DO = 

With this stipulation and utilizing the specific form of A for 2 axis 

quoted already, the expression simplifies to 

Finally, 

0 0 2 6  d.8 2 ‘ d . 2  
Dij = 2D12 = 32(Dll - D22) 0 

Using the relationship 

between Dij and the moment of inertial tensor 

= I”(r 2 tjij - X . k . ) p d V  
Ii j 1 1  

(3) 

(5) 

We can also rewrite the formula (1) for power loss to gravitational radiation by 

a body rotating rigidly about a principle axis as 

dE 2 6  
dt 5 

Applications of the Formula: 

a. Binary Systems 

For two point masses revolving aroun@ their common center of mass, 

about an axis through the masses is it is evident that the moment of inertia I 

zero. 

I2 = pr 2 . Here p = y m 2  (y + m2)-l is the reduced mass and r = Ixl - x2) is 

their separation. 

gravitational luminosity, is then 

1’ 
2’ The well known formula J = p 0 for their angular momentum then gives 

The total power emitted in gravitational radiation, the 

(7) 
32 2 3 2  = -  LB 5 5 ( p b )  

C 
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b. Ellipsoid 

For an ellipsoid of mass mwith semi-axes a, by c the moments of 

inertia are 

I1 = - m 5 (b2 + c2) 

(c2 + a*) m = -  
I2 c 

This leads to a luminosity in gravitational radiation of 
32 G 2 2 2 2  6 

m (a - b )  0 = -  
Le 125 c5 

Natural Unit for Gravitational Radiation: 

The kinetic energy of the binary system is given by 

h pr2J 

If the period of revolution is T = 211 /o we can think of the "kinetic" luminosity 

(or "circulating power") of the system, 

5 = Kinetic Energy = 1 0 = 1  2 3  
period 
2 3  411 4( = 0 ,  which is precisely the quantity, the square of which 

appears in the expression for L We have then B' 

= 16n' x 326 
LB E 

5c2 

Clearly, the constant multiplying 42 must be of the dimension L -1 , so 

that we define the Characteristic Gravitational Luminosity 

(9) 
2 2  

= 3.6 x ergs/sec = 2 x 10 Mec /sec 5 Lg = 5c 

16 x 3 e G  
33 

It is also evident that one can define a natural unit for gravitational radiation 

where M e  = solar mass = 2 g 10 gms. 

in terms of the Universal Constants G and c: 

5 59 5 2  Ln = c = 3.64 x 10 ergs/sec = 2.02 x 10 Mec /sec 
G 
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In the formula 

- LB.&=l 
Lk Lk 

one has a readily available mean of estimating the energy radiated by 

the binary system in terms of Lk. Further, whenever Lk is comparable in magnitude 

to Lg, so will 5 be. 
by Dyson.) 

(This way of stating the radiation formula was first given 

Variation of and r: 

The balance between gravitational attraction and centrifugal force, 

viz., the equation 

Y m 2  "13 3 o r  yields as a function of r: - = -  

Substituting this in L we obtain, B 

4 2 
LB = 326 (ym2) (yh2) 1 A 

- = A  

5 5  
1: r 5 5c 

Next, the total energy of the system is: 

E = V + T; Kinetic Energy T = -4V by virial theorem so that 

-% 9"2 E = % V =  

r 

Differentiating both sides of the equation with respect to time, 

dE 1 G"rm2 dr 
dt 2 2 dt 
- = -  -- 

r 

Equating & to -L above, B dt 

5c' r'l 
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This equation can be readily integrated to give, 

r4 = a4 - 4Bt 
where a = initial separation, i. e., at the instant from which time t is counted. 

We can think of the "life time" of the system which is the time taken 

for the separation to fall down from any given initial value "a" to zero. 

Clearly, life time 
4 T = a /4B 

Before taking up the application of these formulae we may note in 

passing the following fact. 

Suppose we take = m2 - - m. Then, 

4 5  5 =64Gm 1 = 2 c  - 
LB 5c 5 x5 r 5 G  t7)5 

2 When the separation = Scbarzschild Radium, i. e., r = r = 2Gm/c 
S 

5 59 
= 2/5 c /G = 2/5 Ln = 1.46 x 10 ergs/sec 

S 
(LB) r=r 

which is a constant independent of the mass m. 

Application to Astronomical Bodies: 

In the discussion to follow we shall take "1 = m2 = 1Me 

The two constants A and B will then be 

A = 1.66 x Bo = 2.5 x in c .  g. s. units. 

And T = a4 x secs. 

Consider the life time for three characteristic values of initial 

separation: 

1) The median value for the separation of binary stars is - 20Aw - 
3 x lOI4 cm (1AU = 1.496 'x lOI3 cm) which is of the same order of magnitude as 

the distance of planets from the sun. 

For this separation, we find 

T = 8.1 x 10 secs 2.5 x years (1 year = 3.155 x 10 secs) 29 7 
- 
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which i s  an extremely long period of t i m e  (compare with the age of ear th  

9 4 . 5  x 10 years). Lrrminosity a t  t h i s  separation i s  only about 1017 ergs/sec. In  

shor t ,  the e f f ec t  of gravi ta t ional  radiat ion on binary s t a r s  i s  n e g l i b b l e .  
. 

2 )  For a - radius of an average star (10" cms) 

8 32 T 3 x 10 years;  LB = 10 ergs/sec. 

3 )  Binary resul t ing from the symmetric f i s s ion  of an average star: 

Suppose a spherical  s t a r  of radius R and mass M. spinning a t  a 
i 1 

frequency 0.' breaks in to  two equal  parts of mass M each (Mi = 2Mf) separated 
1 f 

by a distance 'a' and revolving a t  a frequency 9. 
i s  conserved during t h i s  process, we can write 

Assuming the angular momentum 

Angular momentum, J = Iiy = I f O  

where I 2 
= Moment of Iner t ia  of the or ig ina l  s t a r  = 2 M i R i  

5 i 

2 If = Moment of Iner t ia  of the binary = 5Mfa * 

2 Further, fo r  the binary o f  = 2mf on account of the equality of gravi ta t ional  - 
3 a 

a t t r ac t ion  and centr i fugal  force. 

Therefore conservation of J yields  

o r  (a)' = 9 (&)' R i  2 u i  

11 For an "average" star R - 10 cms; T = 2J = 1 day 
0 

The f i s s ion  of such a star leads therefore t o  

9 a "  2 . 5  x 10 cms. 

For a - 1 0  cms, T = 10 secs = 3 years. 9 8 
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and LB - ergs/sec as compared with the solar luminosity Le = 

3.9 x ergs/sec. 

We may conclude that a binary system that has evolved out of the fission 

of a star as above can act as a powerful source of gravitational radiation, the 

rate of radiation increasing to values much higher than the initial luminosity 

within a short period of time. We record below three stages during the life of 

the binary system under consideration: 

rcms lo9 3 x 10 8 lo6 

L ekgs/sec lo4%> ~e 2x10 43 - L*galaxy 3.6~10’~ = Lg 

v = CPS 0.1 
211 

0.3 lo3 

T years 3 0.3 10-l2 

However, as the separation is decreased in our calculations, a 

limiting value of r is reached beyond - and possibly around - which the foregoing 
considerations are no longer valid. 

mass is computed we find 

In the first place, if the velocity of each 

As r + rs/4 , v + c 

Secondly, at such small separations the gravitational field would be so 

strong that one may expect the linear theory to be wholly inadequate. We estimate 

a limit as follows: 

As the two masses become tightly bound, they form a single system at mass 

* The value corresponds to the luminosity of the spiral galaxy in Andromeda. 
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2M and Schwarzschild radius 2r . As the Schwarzschild spheres of the separate 
S 

masses, each of radius r begin to touch the region which will be the common 

Schwarzschild sphere of diameter 4r non-linear effects must already be very 

important. Thus for r < 6r the formulas here are almost certainly incorrect 

S’ 

S’ 

S 

even in order of magnitude. 

not exceed the linearized theory estimate which is given by the Newtonian 

The total energy radiated up to this point will 

binding energy 

Whether more than this 2% fraction of the rest mass can be radiated away is a 

question the linearized theory cannot answer. 

Comparison with Radiation from Spheroidal Stars and Effect of Density on 

Radiation Rate: 

Consider a spheroidal star (semi axes a, b, b) spinning about Z axis 

with angular velocity 0. Let us assume that density p = density of our average 

spherical star and mass M = Mass of the spherical star = 2Me. 
3 2 Then 2Me = - 4 W p = - 4 flab p 

3 3 

3 2 
SO that R = ab . 
If we take a = 2R, b = R/fl , with R = 10 11 cms, we can calculate L from the 

expression already derived, viz., 
2 2  2 6  Le = 32G (a 2 - b )  M u  

E 

We find Le = 5.2 x 

LB with r = 10 

ergs/sec which is indeed a small value and corresponds to 
12 crns. 

We next examine for what values of a and b the spheroid can produce. 
42 9 Le = 1.66 x 10 ergs/sec = L for r = 10 crns. B 

Retaining the above assumptions about M and p it can be shown that the a value 
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30 of ergs/sec can be obtained f o r  L e  i f  a = 2 x 10 crns and b = 22 crns! 

Nevertheless, we  must note tha t  during f i s s i o n  of the  spherical  s t a r ,  

the  density of matter increased by an enormous amount. For instance,  i f  each 

component of the binary has a radius a/4 (a  = 10 9 crns), the  density would be 

7 - 3 x 10 gms/cc i n  contrast  to the i n i t i a l  value of 1 gm/cc. I f  the  

spheroidal star i s  allowed t o  have such a high density and i f  the assumption 

made f o r  the f i s s i o n  are retained,  viz . ,  angular momentum and mass of the 

spheroidal star a re  the same as those of the spherical  s t a r ,  the  energy release 

would once again be of high order of magnitude. 

The equations governing the calculat ions would now be 

J = Z M R i U i = M ( a  2 2 2  + b ) a e ;  M=4Jab  2 p 
5 5 3 

7 where M = 2Me and p = 3 x 10 

Assuming the same r a t i o  2 = 2 0  as before, w e  f ind a -  6 x 10 

gms/cc. 

8 ems. 
b 

And the luminosity 

Le  y 2.8 x 10. 44 ergs/sec - 

This i l l u s t r a t e s  the important r o l e  played by density i n  the emission 

of grav i ta t iona l  energy. 

Computations: 

W e  l i s t  here the formulae used i n  preparing the f igure  a t  the end. 

Constants have been evaluated f o r  y = m 2 = M e = 2 x 1 0  33 gms 

-1 a) LB = -dE - = Ao/r5 = 1.66 x 

r 

ergs sec 
5 d t  

1 2  3/2 b) Frequency of ro t a t ion  u = = 2.601 x 10 /r 
2n 

Note: The emitted frequency, as already pointed out ,  i s  twice t h i s  value. 

4 - 28 
c )  T = r /4Bo = r4 x 10 secs = r4 x 3.171 x years.  
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d) The maximum distance ' d '  of the source from earth for xhich 

detection is possible: 

-1 -2  2 If the minimum detectable flux is F ergs sec 

For acoustic vibrations of earth's modes (See Forward, Weber & Zipoy, 

cm then F=LB/4lld 
! 

Nature Vol 189, p 473; 1961): 
-1 -2  cm Frequency of lowest mode -1 cycle per hour; F - 5 ergs sec 

For the detector being built at the University of Maryland which will directly 

respond to gravitational waves (See Weber "General Relativity and Gravitational 

Waves") : 

Frequency - 1600 cps; F - 10 ergs sec -1 cm -2 

-1 -2 In plotting the figure, F has been taken as 1 erg sec cm for 

convenience, so that 

d = (LB/411) h cms. 

Also marked on the figure are: 

Solar Radius Re = 6.96 x lolo cm; AU = 1.5 x 1013 cms; 
6 6rs = 1.8 x 10 cms 

-1 Solar Luminosity = Lo = 3.9 x 

Galactic Luminosity L ergs sec 

Gravitational Luminosity Lg = 3.6 x 10 ergs sec 

Natural unit for Gravitational Radiation Ln = 3.64 x lo5' ergs sec 

ergs sec 
-1 

56 -1 
G -  

-1 . 
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Figure Caption: Gravitational Radiation Data for Two Equal Masses in a Newtonian 

Circular Orbit. Corresponding quantities are on the same horizontal level in the 

figure above. In the case where each mass M is one sun's mass Me, the figure gives 

directly the values of the frequency 2v of the emitted radiation ( v  is the rotation 

frequency of the binary system), of the distance r between the two masses (orbit 

diameter) and of the time T remaining before the state r = o is predicted. For 

other masses, the numbers in the figure give the related quantities as indicated. 

In every case the figure gives directly the radiated power or gravitational wave 

luminosity L and the distance d at which this radiation could be detected by a B Y  
-2 -1 receiver capable of detecting 1 erg cm sec at the appropriate frequency. 

For r < 6r i. e., r < 12GM/c , these quantities based on linearized theory, 

unreliable even as regards order of magnitude. The maximum power emitted by 

2 
S 

are 

a binary system will likely be somewhat less than the characteristic power Lg, or 

the maximum distance for 1 erg cm sec sensitivity detection somewhat less than 

5 . 10 light years. 

-2 -1 

9 


